If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-7x-18=0
a = 3; b = -7; c = -18;
Δ = b2-4ac
Δ = -72-4·3·(-18)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{265}}{2*3}=\frac{7-\sqrt{265}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{265}}{2*3}=\frac{7+\sqrt{265}}{6} $
| T=-5t2+40t-35 | | 12−3x=2 | | 6y-8=2(3y+-4) | | -3(6x-8)+6x=3(x+9) | | xx13=108 | | 0,75x=5+0,5x | | (0.5x+1.2)-(3.6-4.5x)=(4.8-0.3x)+10.5x+0.6) | | -3(6x-8)+6x=3(x+9 | | (1-x)^2+(1-x/2)^2=1 | | (3-4y)(2y+1)=0 | | .4x-3x=5x-19 | | 6(v-1)=8v+2 | | -3x^2+7-20x=0 | | 8y-10=5(y+1) | | 11-3x–7-3x=6 | | -8x-7=-12 | | 4x-14-2x=60 | | 3p+3p/4+p/2=180 | | 10=9x+43x | | 5=x+36/6 | | 6u-40=2(u-2) | | -5x^2-30x-41=0 | | -6(w-1)=7w+32 | | 2v+30=4(v+9) | | Y=21-3x/7 | | -4(y-1)=8y-20 | | 8y+30=5(y+3) | | 18y+13=12y–25 | | 3(y+41)=3y+124 | | 3(x-7)-6x=-39 | | A=75+40h | | 4=7(u+7)+8u |